Integrating Clipped Spherical Harmonics Expansions

Laurent Belcour at al. 2018 ACM TOG

Presenter: 조인영 - In Young Cho

Analytic Solution RETURNS

- Real-time rendering, AGAIN!
 - Analytic solution of the rendering equation

- My first paper presentation: LTC
- My project title: LTC for shadow
- This paper presentation: Spherical Harmonics

Motivation of This Paper

- Let's approximate BRDFs
- Let's approximate randomly shaped BRDFs!!

Also, the integration should be easy

Contribution of This Paper

1. Found a scheme to integrate

- a. not only simple BRDFs
- b. but ANY arbitrary spherical functions
- c. efficiently

2. Apply the scheme to

- a. surface rendering
- b. importance sampling
- c. control variate (reduce MCRT's noise)

Need Visual Aids?

https://belcour.github.io/blog/slides/2018-integration-sh/slides.html#/18

A Few Existing Methods

- But approximate the BRDF with only one & simple function
 - Heitz LTC paper, use LTC alone
- Hard to get good approximations of complex BRDFs

Single Function Approximations

imgur.com & MATLAB

$$y = ax + b$$

$$y = a\cos(bx)$$

Single Function Approximations

- Works well in very narrow ranges
- Not works in broad range
- Not works for sophisticated functions

A Few Existing Methods

 Hard to get good approximations of complex BRDFs

Can We Do Better?

- Good approximation of arbitrarily, sophisticated shaped BRDFs
 - Efficient computation of the integrals

Key Concept (1): Spherical Harmonics

Key Idea: Series of Functions

Taylor series

$$f(x) \approx P_n(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \dots$$

rather than a single linear line

Fourier series

$$f(x) \approx f_n(x) = a_0 + a_1 \cos(x) + a_2 \cos(2x) + a_3 \cos(3x) \dots$$

rather than a single cosine

Add the more complex terms behind, the better

Spherical Harmonics

https://en.wikipedia.org/wiki/File:Spherical_Harmonics.png

Spherical Harmonics Expansion

- Taylor: $f(x) \approx P_n(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \dots$
- Fourier: $f(x) \approx f_n(x) = a_0 + a_1 \cos(x) + a_2 \cos(2x) + a_3 \cos(2x) + a_4 \cos(2x) + a_5 \cos(2x$
- SH:

 Any spherical function can be decomposed in an infinite SH expansion!

In Fancy Words....

Spherical Harmonics are an orthonormal basis of functions defined on the unit sphere.

Even if you cannot get it, it's okay~~!

Approximate BRDF Integration

$$f(\omega) = \sum f_{l,m} \, \underline{y_l^m(\omega)}$$
 Spherical Harmonic

$$\int_{P} f(\omega)d\omega = \sum_{l} f_{l,m} \int_{P} y_{l}^{m}(\omega)d\omega$$

 Integral of BRDF is nothing but sum of integral of Spherical Harmonics

Key Concept (2): So, How to Integrate SHs?? <Powers of Cosine>

Spherical Harmonics

Sum of powers of cosine

$$SH = Cosine + Cosine^2 + \dots + Cosine^n$$

Power Cosine Integration

$$\int (\cos x)^n dx = \frac{(\cos x)^{n-1} \sin x}{n} + \frac{n-1}{n} \int (\cos x)^{n-2} dx$$

- Recursive integration
- If we store previous terms, we can exploit them to compute the integral of next power cosine

$$SH = Cosine + Cosine^2 + \dots + Cosine^n$$

Substitution Property of Cosine

- Recursive Integration [Arvo1995]
 - over a spherical polygon
 - plays an important role in computational complexity drop

- Overall,
 - Integral of BRDF → Sum of Integral of SHs
 - Integral of SHs → Sum of Integral of PowCos
 - Exploit recursive property of powers of cosines

Algorithmic Complexity

Linear w.r.t. number of SH coefficients

At the End of Our Journey

- Spherical Harmonics expansion
 - How to approximate BRDFs?
 - Taylor or Fourier series for spherical functions

- Power cosine integration
 - How to compute the integral of SH?
 - Thanks to math, cheap to compute

SH approximates any function on sphere

Quiz

Quiz

1. What is the benefit of Spherical Harmonics approximation? (against existing analytical solutions)

2. Which property of powers of cosine plays an important role in computational complexity?

Supplementary Slides

Spherical Harmonics Expansion

$$y_l^m(\theta, \phi) = K_l^m \begin{cases} \cos(m\phi) \ P_l^m(\cos\theta), & m \ge 0\\ \sin(|m|\phi) \ P_l^{|m|}(\cos\theta), & m < 0 \end{cases}$$

$$I = \sum_{l,m} f_l^m \int_{\mathcal{P}} y_l^m(\vec{\omega}) \, d\vec{\omega} .$$

$$I = \sum_{l,m} \sum_{\overline{m},d} \sum_{k} f_l^m \alpha_{l,m}^{\overline{m}} p_k \int_{\mathcal{P}} \cos^k \theta_d d\omega$$

Arvo, 1995

$$\bar{\tau}^n(A, \mathbf{w}) \equiv \int_A (\mathbf{w} \cdot \mathbf{u})^n \ d\sigma(\mathbf{u}).$$

$$(n+1) \bar{\tau}^n = (n-1) (\mathbf{w} \cdot \mathbf{w}) \bar{\tau}^{n-2}$$
$$- \int_{\partial A} (\mathbf{w} \cdot \mathbf{u})^{n-1} \mathbf{w} \cdot \mathbf{n} \, ds,$$

$$\int (\cos x)^n dx = \frac{(\cos x)^{n-1} \sin x}{n} + \frac{n-1}{n} \int (\cos x)^{n-2} dx$$

Applications

Sponza scene

Applications

Fog rendering

Details are in the paper

Applications

Shadow (with MC ray tracing)

Details are in the paper